无线继电保护矢量分析仪

说

明

书

尊敬的顾客

感谢您购买本公司无线继电保护矢量分析仪。为了正确使用本仪器,请您在使用本仪器之前仔细阅读本说明书,特别是"安全注意事项"部分。

如果您已经阅读完本说明书全文,建议您将此说明书进行妥善的保管,与仪器一同放置或者放在您随时可以查阅的地方,以便在将来的使用过程中进行查阅。

我们的宗旨是不断地改进和完善公司的产品,因此您 所使用的产品可能与使用说明书有少许的差别。如有不清 楚之处,请与公司售后服务部联络,我们会及时予以回复。

由于输入输出端子、测试柱等均有可能带电压,您在 插拔测试线、电源插座时,会产生电火花,小心电击,避 免触电危险,注意人身安全!

慎重保证

本公司生产的产品,在发货之日起六个月内,如产品出现缺陷,实行包换。两年内如产品出现缺陷,实行免费维修。两年以上如产品出现缺陷,实行有偿终身维修。

安全注意事项

请阅读下列安全注意事项,以免人身伤害,并防止本产品或与其相连接的任何其它产品受到损坏。为了避免可能发生的危险,本产品只可在规定的范围内使用。

只有合格的技术人员才可执行维修与操作。

- ◆ 作为安全措施,该仪器配有保护接地端子,试验前应将装置侧面的接地端子可靠接地。
- ◇ 防止跌落: 勿将本仪器置于不平稳的平台或桌面上以防仪器跌落受损。
- ◆ 使用适当的电源线: 应使用 220VAC、50/60Hz、承受电流 10A 及以上的电源线。
- ◆ 保证良好散热: 仪器侧面的风扇、通风孔为通风散热而设,请勿堵塞。
- ◇ 防止短路:不要让任何异物掉入机箱内,以免发生短路。
- ◆ 正确地连接和断开: 当设备在测试时,请勿连接或断开测试导线。
- ◆ 请勿在无仪器盖板时操作:如盖板或面板已卸下,请勿操作本产品。
- ◆ 使用适当的保险丝:本设备使用 12A 保险丝。
- ◆ 避免接触裸露电路和带电金属:产品有电时,请勿触摸裸露的接点和部位。
- ◆ 在有可疑的故障时,请勿操作:如怀疑本产品有损坏,请本公司维修人员进行检查,切勿继续操作。
- ◆ 操作环境:请勿在潮湿环境、易爆环境中操作。
- ◇ 本仪器是精密电子仪器,请在室外使用时注意防止烈日暴晒等高温环境, 注意做好遮挡烈日及通风工作,以防仪器过热或导致测量精度下降。
- ◆ 产品运输:运输时请在仪器外面铺垫海绵等缓冲保护物,以免振动颠簸 损坏仪器或降低仪器精度。

目 录

– ,	概述错误! 未定义书签。
_,	技术指标
三、	测量接线
四、	基本操作说明
五、	无线遥测
六、	相伏安测量1
七、	矢量图测量1
八、	单路测量2
九、	相位测量界面2
十、	功率测量2
+-	-、三相不平衡测量2
+=	1、参数设置2
十三	E、产品外形图2

JL5010 无线继电保护矢量分析仪是分布式无线同步测量伏安相位电参数的 仪器,由两台手持测量终端组成,每台手持终端单独使用时,可以当作三相伏安相位表使用。两台同时使用时可以同步测量六路电压,六路电流的幅值,相位等参数,同步测量相位误差在 0.5°以内,非常适合变压器差动保护矢量分析,母线差动保护矢量分析。

无线继电保护矢量分析仪彻底解决变电站内分布式同步测量的问题,无需 GPS,无需放电缆来引入参考电压,避免由于电缆绝缘或者操作问题造成的 PT 二次短路,简单实用,适用于没有参考电压的场合,例如 2/3 接线的母线保护屏,户外电流互感器的端子箱,智能变电站合并单元前差动保护 CT 信号等,大幅提高全站多间隔相量测量工作效率。

无线继电保护矢量分析仪又称为六相保护回路矢量测试仪、回路矢量分析仪。 单台主机可以完成三相的电压、电流、相位、频率、功率、功率因数、三相 不平衡度等电参数的高精度测量。

无线继电保护矢量分析仪具有如下功能及特点:

- 采用无线同步采样技术,无需 GPS,无需长电缆
- 同步采样六路电压,六路电流
- 多种相位参考,可选本机 UA 或 IA,从机 UA 或 IA
- 多种矢量显示方式,可选本机电压-从机电流,从机电压-本机电流,本机电压-从机电压,本机电流-从机电流,本机电流-从机电压,从机电压 -本机电流,本机电压-本机电流,从机电压-从机电流
- 采用专用定制天线,轻松应对站内各种复杂环境的 远距离无线通讯
- 可选的无线中继器,解决地下室及屏蔽很好的室内无线通讯的问题
- 单机同时测量1至3路交流电压:
- 单机同时测量1至3路交流电流;
- 单机测量电压间、电流间、电压与电流间的相位;
- 单机测量频率;
- 单机测量功率;
- 单机显示六角图向量:
- 单机三相不平衡度测量

- 具有抗谐波干扰的功能,在有谐波的情况下,依然保持测量的精度
- 电流幅值相位测量最小可达 1mA. 非常适合变电站主变带负荷试验以及新建站或负荷小的站电流测量。
- 自动切换量程
- 电压,电流采样全隔离
- 可通过 SD 卡升级应用程序
- 采用 3.5 寸彩色液晶显示屏
- 内置大容量锂电池,一次充电后,不关屏幕背光时,可以连续工作 10 小时(开启背光关闭功能,待机时间更长)。

二、技术指标

2.1 测量范围及误差

类型	测量范围	单位	误差	分辨率
电压	5 ~ 600V	V	0.5% x 读数 +5 个字	0. 1V
电流	0.001 [~] 6A(可扩展)	A	0.5% x 读数 +5 个字	0. 0001A
有功功率	0.005 ~ 3600	W	0.5% x 读数(PF=1)	0. 1W
无功功率	0.005 ~ 3600	VAR	0.5% x 读数(PF=0)	0.1Var
频率	45 [~] 65	Hz	0.02Hz	0.01Hz
相位	0 ~ 360	0	+ 0.5°	0.1°

无线同步相位误差: + 0.5°

无线通讯距离: 1000米(开阔地)

选用无线中继器通讯距离: 2000米 (开阔地)

2.2 工作条件

工作温度: -20 ~ 50℃, 相对湿度: 0 ~ 95%无冷凝

2.3 电源

内置 3. 7V/6000mAH 锂电池,开背光的情况下,最长连续工作 10 小时(开启背光关闭功能,待机时间更长)。也可以使用仪器配备的 5V/3A 交流电源适配器供电。

三、测量接线

3.1 Y 型接线

将 Un 接线端子(导线颜色为黑色)夹到要测量的电压信号的零线上,U1,U2,U3 电压接线端子(导线颜色分别为黄,绿,红色)夹到 A,B,C 三相相线上;如只需测量一相电压,将 Un 接线端子夹到零线上,U1 接线端子夹到待测相线上;如测量两相电压,将 Un 接线端子夹到零线上,U1,U2 接线端子夹到待测相上。

电流钳侧面的箭头标示了电流的流向。将 I1, I2, I3 电流钳(钳子线上的颜色圈依次为黄,绿,红色)夹到 A,B,C 三相相线上;如只需测量一路电流,I1电流钳夹到该路电流线上;如测量两路电流,将 I1,I2 电流钳夹到待测电流线上。

3.2 △型接线

将 Un 接线端子(导线颜色为黑色)夹到 B 相上,U1 和 U3 电压接线端子(导线颜色依次为黄,红)夹到 A 相和 C 相上。电流钳侧面的箭头标示了电流的流向。将 I1, I2, I3 电流钳(钳子线上的颜色圈依次为黄,绿,红色)夹到 A,B,C 三相相线上。

四、基本操作说明

4.1 仪表开机

仪器在关机状态下,长按 键约 3 秒钟,仪表上电。仪表首先显示"开机界面"约 8 秒,然后会切换到"主菜单页面",如下图 1 所示:

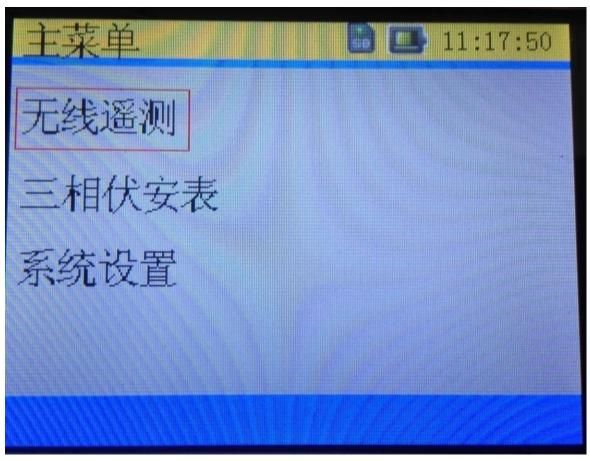


图 1

4.2 仪表关机

4.3 SD 卡插拔

4.3.1 SD 卡插入

在仪表下侧写有 SD 卡的位置,将 SD 卡有铜触电的一面朝下,轻轻插入,用 大拇指的指甲向内顶 SD 卡,在 SD 卡正好没入卡槽,并听到微弱的"嗒"声后, 标示 SD 卡插入完成。

4.3.2 SD 卡拔出

用大拇指的指甲相内顶 SD 卡, 在听到微弱的"嗒"声后, 将手指移开, SD

卡会自动从插槽弹出,再将SD卡从仪表取出。

4.3.3 开机状态下插拔

插拔的方法与上面讲的相同。在 SD 卡插入之前,仪表的 SD 卡图标显示为■,表示仪表没有检测到 SD 卡, 当 SD 卡插入后大约 1 秒钟,仪表的 SD 卡图标会变为■,表示仪表已经检测到 SD 卡。

4.4 使用外接 DC 电源

仪表处于开机或关机状态都可以使用外接 DC 电源,开机状态下,使用外接 DC 电源可以给仪表供电的同时,给电池充电。仪表关机状态下,使用外接 DC 电源则只给电池供电。充电状态下,仪表电源插孔旁的发光二极管常亮。

4.4.1 接入 DC 电源

将电源线的一端插入仪表下部标有 DC 5V 的插孔,将电源线的另一端插入交流插座。

4.4.2 断开 DC 电源

将电源线连接交流插座的一端拔出。将电源线插入仪表的另一端拔出。

4.5 测量功能的选择

仪表所具有的功能如图 1 所示,无线遥测,三相伏安表。

仪表开机后,进入"主菜单"页面。在"主菜单"页面下使用←,→方向键,将屏幕上的选择框移动到需要的功能前,按 ENTER 键进入该功能。

4.6 界面导览

下面以"三相伏安"功能中的页面为例进行说明,如图2所示。

4.6.1 功能指示

图 2 中界面左上角的"三相伏安"表示当前处在何种测量功能。

4.6.2 状态图标指示

图 2 中界面中上部共有两种状态图标,分别表示 SD 卡状态,以及电池电量状态。

三相伊	安	a 16:59:42	
	I	II	III
电压(V)	0.0	0.0	0.0
电流(A)	0.0000	0.0000	0.0001
U>I(°)	333. 1	344.7	4.3
COS∮	0.891	0.964	0.997
频率(Hz)	50.00		
	I>II	II>III	III>I
Π(°)	336.8	346. 7	36. 4
I(°)	348. 5	6. 2	5. 2
主界面	运行	基波幅值	矢量图

图 2

4.6.1 功能指示

图 2 中界面左上角的"三相伏安"表示当前处在何种测量功能。

4.6.2 状态图标指示

图 2 中界面中上部共有两种状态图标,分别表示 SD 卡状态,以及电池电量状态。

4.6.3 时间指示:

图 2 中界面右上部为时间显示区域,表示当前的时间。

4.6.4 功能键提示

图 2 界面的底部是功能键提示区域,指示代表 F1,F2,F3,F4 这四个按键的功能,如果某个按键对应的区域为空,则表示,该按键在本界面不起作用。如本界面下,F1 键表示返回主界面,F2 键表示页面停止刷新,F3 键表示当前处在基波幅值测量状态,F4 键表示进入矢量图界面。

4.6.5 显示操作区域

上图界面的中部为显示操作区域,在该区域显示测量结果,更改参数设置等操作。

4.6.6 状态图标说明

SD 卡状态说明:

■表示未检测到 SD 卡, ■表示检测到 SD 卡。

电池电量状态说明:

■,■,■,■分别表示电池电量由低到高。如果当前处在充电状态,则快速依次显示■,■,□,□。

4.7 按键使用说明

仪表共有 11 个按键,分别为 F1, F2, F3, F4 四个功能键, MENU 键, ENTER 键和 ↑, ↓, ←,→四个方向键, 健电源开关键。下面分别说明:

4.7.1 F1, F2, F3, F4 功能键:

四个功能键的定义在每个界面下可能不一样,具体的定义在液晶屏对应的区域有文字提示。

4.7.2 MENU 键:

该键的功能是仪表返回"主菜单"界面。不论当前仪表处于何种状态,触发该键后仪表均会进入"主菜单"界面。用户可在该界面下重新选择需要的功能进行操作。

4.7.3 ENTER 键:

该键的功能为确认输入或确认选项。该键的使用会在各功能使用说明中具体说明。

4.7.4 ↑, ↓, ←, →方向键:

分别为上/下/左/右四个方向键,这些键用来改变选项,参数设置值和翻页等,这些键的使用请参考各功能使用说明中具体说明。

4.7.5 世 健电源开关键:

该键为仪表电源控制键。在关机状态下,用户长按大约 3 秒钟,仪表会上电 开机。在开机状态下,用户长按该键大约 3 秒钟,仪表会断电关机。

五、无线遥测

5.1 功能说明

该功能用来无线同步测量六相电压,六相电流。能够选择多种矢量显示,并且可以选择本机 UA, IA,从机 UA, IA 作为相位参考。还能进行无线通讯信号质量测试。界面如图 3 所示:

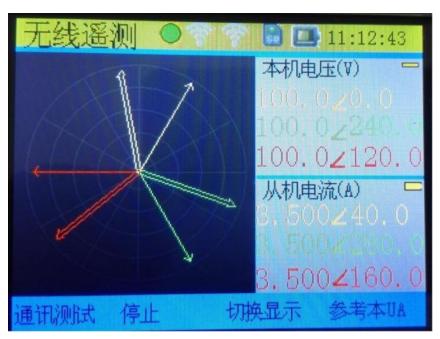


图 3

5.2 操作说明

5.2.1 通讯测试功能

该功能用来测试本机与从机之间,本机与中继器(可选)之间的无线通讯信号质量。测试结果以图标的方式显示在标题栏。其中左边的天线图标代表本机与从机之间的无线通讯信号质量,右边的天线图标代表本机与中继器之间的无线通讯信号质量。图标 表示信号质量优,图标 表示信号质量良,图标 表示信号质量不达标。只有通讯信号质量优,或者通讯信号质量良的情况下,测试才能顺利完成。如果信号质量不达标则需要调整天线位置或者更换天线。

按下F1键,开始通讯测试。仪器首先测试本机与中继器之间的无线信号质量,然后再测试本机与从机之间的无线信号质量,只要有一个信号质量是优或者良,试验就能顺利的进行。标题栏绿灯闪烁则代表本机无线发送数据,如图标●所示。红灯闪烁则代表本机收到无线数据,如图标●所示。显示灰色的灯,则

表示当前没有无线数据的收发。如图标◎所示。

5.2.2 无线遥测功能

按下 F2 键开始无线遥测,如果在此之前没有进行无线信号质量测试,则自动的开始无线通讯质量测试,然后才开始无线遥测。界面不断的刷新测量结果,直到再次按下 F2 键,停止测试。界面左边用矢量显示当前选定的测试结果,右边是列表显示选定的测试结果的幅值和相位,矢量图上用粗细箭头分别表示两组

5.2.3 切换显示方式功能:

按下F3键,切换各种显示方式,分别是:本机电压—从机电流,从机电压—本机电流,本机电压—从机电压,本机电流—从机电流,本机电流—从机电压,从机电流,本机电流—从机电压,从机电流—本机电压,本机电压—本机电流,从机电压—从机电流,共8种显示模式。

假设:

本机电量参数分别是:

UA: 100.0V∠0.0°

UB: $100.0V \angle 240.0^{\circ}$

UC: 100.0V∠120.0°

IA: 5.500A∠10.0°

IB: $5.500A \angle 250.0^{\circ}$

IC: $5.500A \angle 130.0^{\circ}$

丛机电量参数分别是:

UA: 57.7V∠30.0°

UB: 57.7V∠280.0°

UC: 57.7V∠150.0°

IA: $3.500A \angle 40.0^{\circ}$

IB: 3.500A∠280.0°

IC: 3.500A∠160.0°

矢量图显示设置如下:

角度正方向: 逆时针

零序位置: 三点

基准量角度: 0°

无线遥测电参数相位参考为:参考本 UA

本机电压一从机电流显示模式如下:

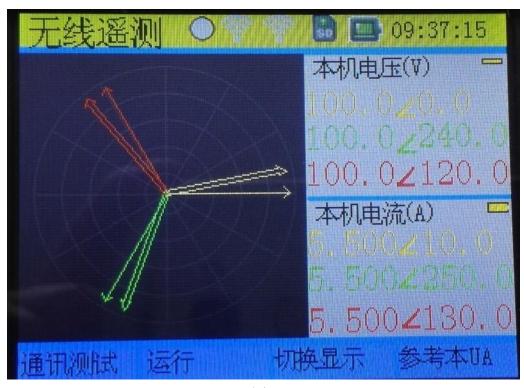


图 4

从机电压一本机电流显示模式如下:

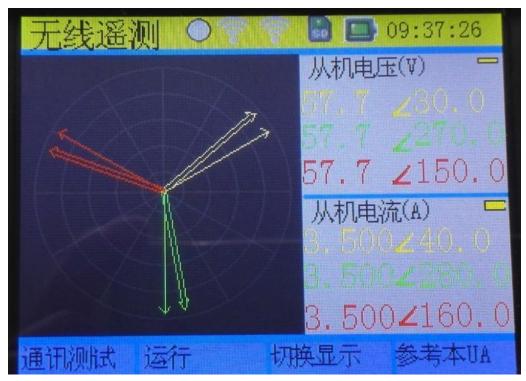


图 5

本机电压—从机电压显示模式如下:

图 6

本机电流—从机电流显示模式如下:

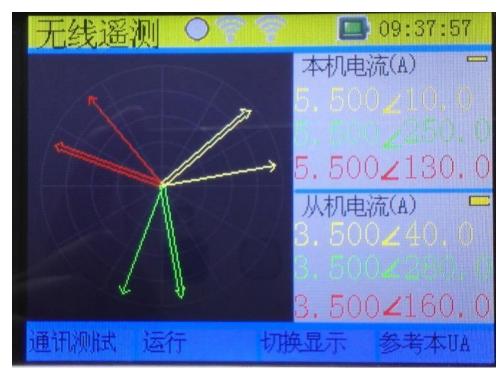


图 7

本机电流一从机电压显示模式如下:

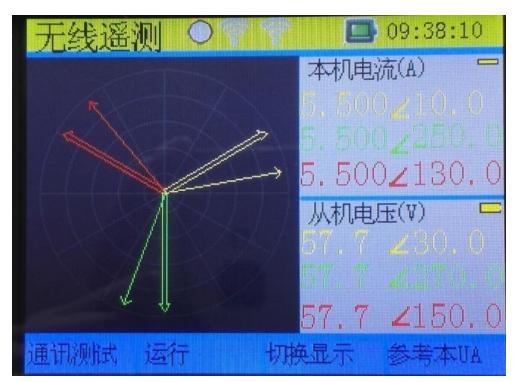


图 8

从机电流一本机电压显示模式如下:

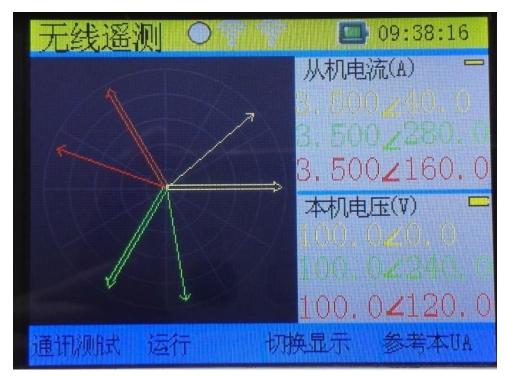


图 9

本机电压一本机电流显示模式如下:

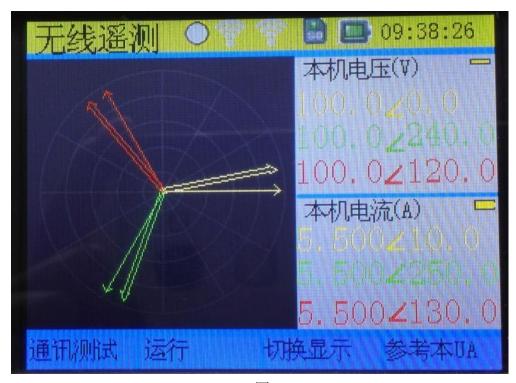


图 10

从机电压—从机电流显示模式如下:

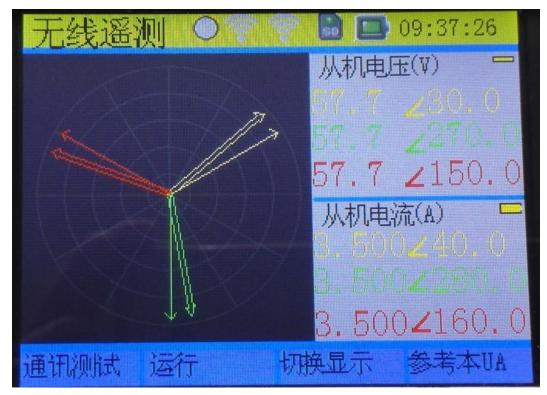


图 11

参考相位切换功能

按下F4键可以更改相位参考,一共有四种相位参考,分别是本机UA,本机IA,从机UA,从机IA。

假设:

本机电量参数分别是:

UA: 100.0V∠0.0°

UB: 100.0V∠240.0°

UC: 100.0V∠120.0°

IA: 5.500A∠10.0°

IB: 5.500A∠250.0°

IC: 5.500A∠130.0°

丛机电量参数分别是:

UA: 57.7V∠30.0°

UB: 57.7V∠280.0°

UC: 57.7V∠150.0°

IA: $3.500A \angle 40.0^{\circ}$

IB: 3.500A∠280.0°

IC: 3.500A∠160.

矢量图显示设置如下:

角度正方向: 逆时针

零序位置: 三点

基准量角度: 0°

本机电流一从机电压方式,参考本 UA,显示如下:

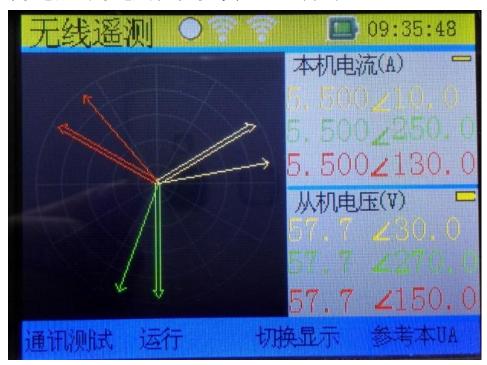


图 12

本机电流—从机电压方式,参考本 IA,显示如下:

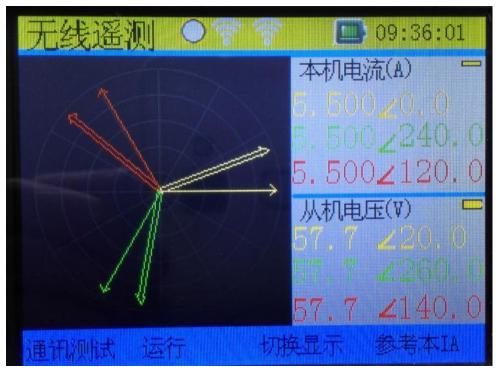


图 13

本机电流一从机电压方式,参考从UA,显示如下:

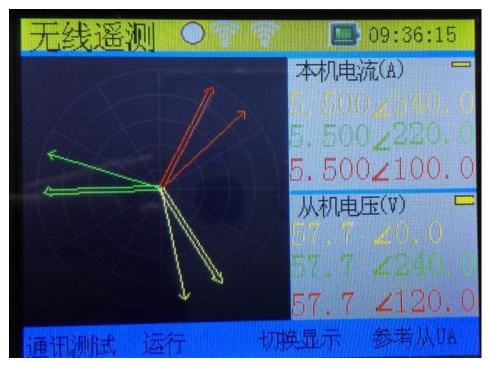


图 14

本机电流—从机电压方式,参考从 IA,显示如下:

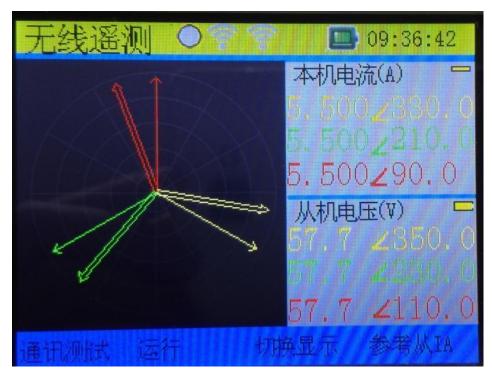


图 15

六、相伏安测量

6.1 功能说明

该功能用来测量三相电压、三相电流的基本参数。具体参数有三相电压有效值、三相电流有效值、频率和三相电压间、电流间、电压与电流间的相位、功率因数。界面如图 3 所示:

三相伊	安		16:59:42	
	I	II	III	
电压(V)	0.0	0.0	0.0	
电流(A)	0.0000	0.0000	0.0001	
U>I(°)	333. 1	344.7	4.3	
COS∮	0.891	0.964	0.997	
频率(Hz)		50.00		
	I>II	II>III	III>I	
U(°)	336.8	346.7	36. 4	
I(°)	348. 5	6. 2	5. 2	
主界面	运行	基波幅值	矢量图	

图 3

注意: 此处的频率显示的是 I 相电压的频率,要测量 I 相, II 相的频率,请使用"单路测量"功能。

6.2 操作说明

6.2.1 数据保持功能

保持功能使屏幕上的参数测量值保持不变,便于用户读取、分析等。通过按下 F2 键即可实现当前测量结果的保持与取消保持。

6.2.2 切换到主界面

按下 F1 键, 仪表切换到主界面。

6.2.3 切换到真有效值测量状态

按下 F3 键, 仪表切换到真有效值状态, 默认情况下, 界面上显示的电压, 电流幅值是基波幅值, 而切换到真有效值测量状态,则界面上显示的电压, 电流幅值是真有效值。

6.2.4 切换到矢量图界面

按下 F4 键, 仪表切换到矢量图页面。

七、矢量图测量

7.1 功能说明

该功能用矢量(相量)图的方式显示三相电压,三相电流的幅值和相位。电压幅值的大小与电压矢量的长度成比例。电流幅值的大小与电流矢量的长度成比例。在界面的右侧用数字显示电压,电流的幅值和相位,并且自动的判断电压相序和电流相序是否正确。用白色方块表示幅值大小,相序无法判断,用红色方块表示相序错误,用绿色方块表示相序正确。所有矢量都是以UA为相位参考,界面如图 4 所示:

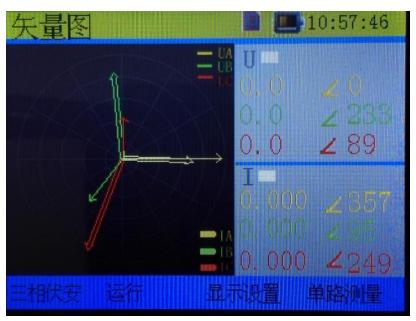


图 4

7.2 操作说明

7.2.1 数据保持功能

保持功能使屏幕上的参数测量值,矢量图保持不变,便于用户读取、分析等。 通过按下 F2 键即可实现当前测量结果的保持与取消保持。

7.2.2 切换到三相伏安界面

在本界面时,按下F1键,仪表回到三相伏安界面。

7.2.3 切换到单路测试界面

在本界面时,按下 F4 键,仪表跳转到单路测试界面。

7.2.4 切换到显示设置界面

在本界面时,按下F3键,仪表跳到显示设置界面。

在该界面下,可以实现矢量图的角度正方向,零序位置,基准量角度,以及是否显示 UA, UB, UC, IA, IB, IC 矢量。界面如图 5 所示。

用←,→键移动到需要更改的项目,并用↑,↓键更改项目选项。由于电测计量部门和继电保护部门不同用户习惯不同,国内外不同设备上显示向量图方式也不同,为方便用户使用,向量图绘制还可以根据用户习惯进行设置,角度正方向可设为顺时针或逆时针,0°角可设为12点钟方向或3点钟方向,基准量可以设为0°或330°。

可以设置是否显示 UA, UB, UC, IA, IB, IC. 更改完参数设置后,可以按 F3 键,保存设置,另外也可按 F2 直接复默认设置参数,按 F1 键回到矢量图界面查看设置的结果。

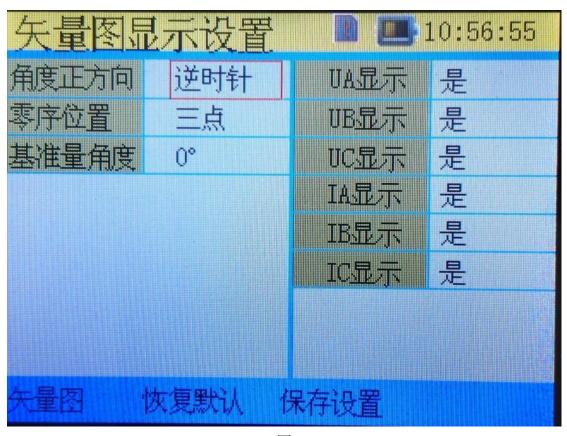


图 5

如设置基准量角度为330°,则在向量图显示时会将基准量的角度调整显示为330°其余各量会根据同基准量之间的相位角进行相应的调整,保证各输入量之间的相位关系。

增加此功能是为方便电能计量使用部门在三相三线制时的测量。根据相电压

与线电压之间的关系,如假定 UA 为 0°,则 UAB 应为 330°。

假设 UA = 200.0 \angle 0° , UB = 210.0 \angle 240° , UC= 160.0 \angle 120° , IA = 5.0 \angle 30° , IB = 8.0 \angle 270° , IC = 6.0 \angle 150° :

角度正方向为:逆时针,零序位置为:三点,基准量角度为:0°时,矢量图如图 6 所示:

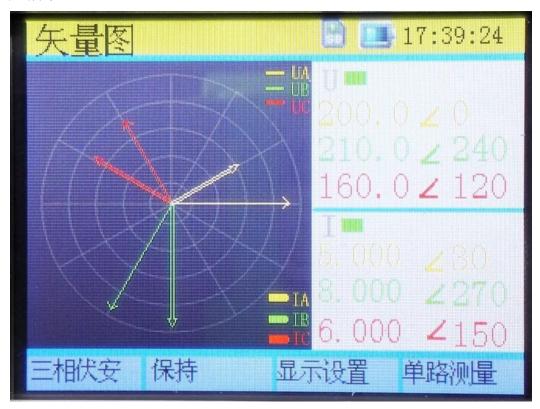


图 6

角度正方向为:顺时针,零序位置为:三点,基准量角度为:0°时,矢量图如图 7 所示:

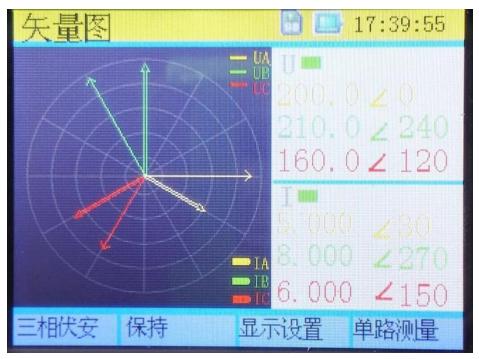


图 7

角度正方向为:逆时针,零序位置为:三点,基准量角度为:330°时,矢量图如图 8 所示:

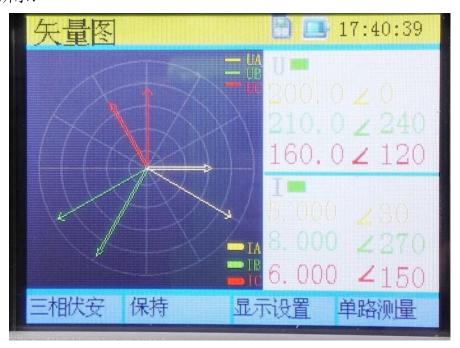


图 8

角度正方向为:逆时针,零序位置为:十二点,基准量角度为:0°时,矢量图如图 9 所示:

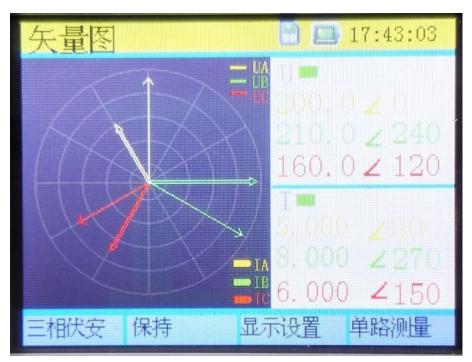


图 9

角度正方向为:顺时针,零序位置为:十二点,基准量角度为:0°时,矢量图如 10 所示:

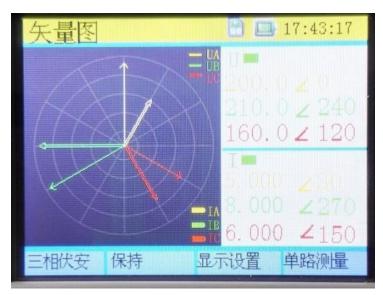


图 10

八、单路测量

8.1 功能说明

单路测量界面用大字体显示单路的电压,电流,相位,功率因数,功率,频率参数。大字体显示更清晰简洁,不同于三相伏安界面,本界面下的可以测量 UA, UB, UC 任一相的频率。界面如图 11 所示。

A相测试。	1 0:55:39
电压(V)	0.0
电流(A)	0.0000
相位(°)	210. 1
COS∮	0.000
功率(W)	0.0
频率(Hz)	50.00
矢量图 停止	上 切换通道 相位测量

图 11

8.2 操作说明

8.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过 按下 F2 键即可实现当前测量结果的保持与取消保持。

8.2.2 切换到矢量图界面

按下 F1 键, 仪表跳转到矢量图界面。

8.2.3 切换通道

按下F3键,实现A相/B相/C相 通道的切换。

8.2.4 切换到相位测量界面

按下 F4 键, 仪表跳转到相位测量界面。

九、相位测量界面

9.1 功能说明

相位测量界面以 UA 为相位参考,分别显示 UB, UC, IA, IB, IC 的绝对相位,并计算每一相电压与电流之间的相位差,同时显示 UA, UB, UC, IA, IB, IC 的幅值。界面如图 12 所示。

9.2 操作说明

9.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过 按下 F2 键即可实现当前测量结果的保持与取消保持。

9.2.2 切换到单路测量界面

按下 F1 键, 仪表跳转到单路测量界面。

9.2.3 切换到功率测量界面

按下 F4 键, 仪表跳转到功率测量界面。

相位涉	0量		10:55:48
输入	幅值(V)	相位(°)	∮UI
U1	0.0	0.0	105 /
I1	0.0000	125.4	125. 4
U2	0.0	154.4	45.8
I2	0.0000	200.2	40.0
U3	0.0	223.5	
I3	0.0000	264.2	40.7
单路测量	停止		功率测量

图 12

十、 功率测量

10.1 功能说明

功率测量界面显示三相的功率因数,有功功率,有功功率因数,无功功率 因数,无功功率,总有功功率,总无功功率。界面如图 13 所示。

功率测量 10:55:56				
	I	Ш	III	
COS\$	0.000	0.000	0.000	
P(W)	0.0	0.0	0.0	
SIN∮	0.000	0.000	0.000	
Q(Var)	0.0	0.0	0.0	
$\Sigma P(W) 0 \qquad \Sigma Q(Var) 0$				
频率(Hz) 50.00				
相位测量停止不平衡度				

图 13

10.2 操作说明

10.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过 按下 F2 键即可实现当前测量结果的保持与取消保持。

10.2.2 切换到相位测量界面

按下 F1 键, 仪表跳转到相位测量界面。

10.2.3 切换到不平衡度界面

按下 F4 键, 仪表跳转到不平衡度界面。

十一、三相不平衡测量

11.1 功能说明

三相不平衡度界面,测量三相电压的正序分量,负序分量,计算电压的不平衡度,测量三相电流正序分量,电流负序分量,计算电流的不平衡度。界面如图 14 所示。

11.2 操作说明

11.2.1 数据保持功能

保持功能使屏幕上的参数测量值,保持不变,便于用户读取、分析等。通过 按下 F2 键即可实现当前测量结果的保持与取消保持。

11.2.2 切换到功率测量界面

按下 F1 键, 仪表跳转到功率测量界面。

11.2.3 切换到参数设置界面

按下 F4 键, 仪表跳转到参数设置界面。

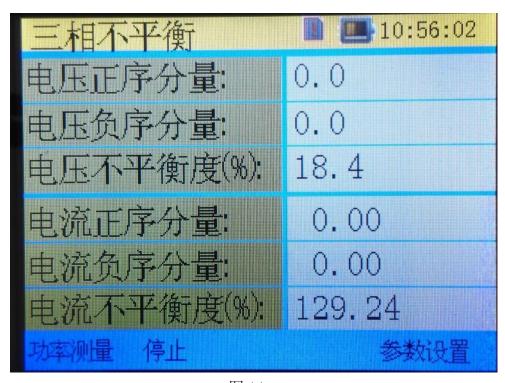


图 14

十二、参数设置

12.1 功能说明

参数设置界面,可以设置当前的日期,时间,电池供电时的液晶背光亮度,外接电源时液晶背光亮度,关液晶背光时间(电池供电时),降低电池供电时的液晶背光亮度和减少关液晶背光时间可以大幅提高仪表的电池待机时间。界面如图 15 所示。

12.2 操作说明

用←,→键移动到需要更改的项目,并用↑, ↓键更改项目选项。需要注意的事更改日期时间后,按 F4 保存,更改其它参数后,按 F3 保存。

12.2.1 设置日期,时间

用←,→键移动光标到需要更改的日期或时间处,用↑,↓键更改数值,更改完成后,按 F4 键保存时间设置。

12.2.2 更改背光亮度和关液晶背光时间

用←,→键移动光标到需要更改处,用↑,↓键更改选项,更改完成后,按 F3 键保存设置。

12.2.3 切换到不平衡度界面

按 F1 键, 仪表跳转到三相不平衡度测量界面。

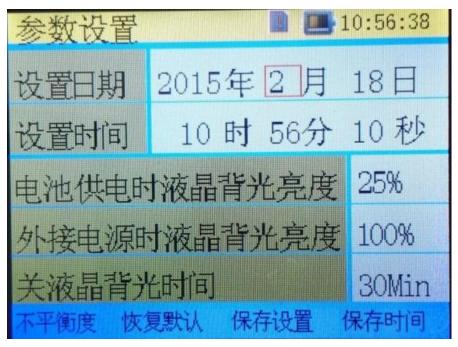


图 15

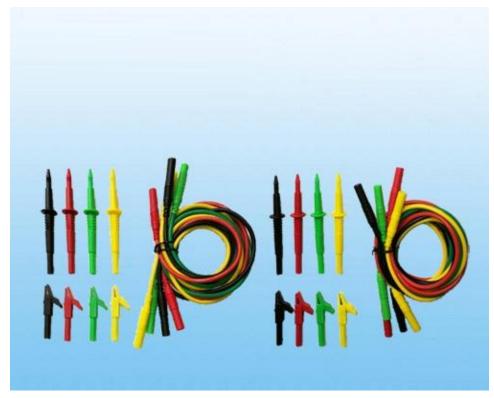
十三、产品外形图

仪表尺寸: 240*135*60mm

外包装箱尺寸: 390*290*105mm

系统配置示意图

注:无线中继器是选配件



主机

电流钳

电压笔

充电器